1 Notes on Construction of Cremers et al factors

Cremers et al constructs two factors:

1. JUMP factor consists of two straddles: one expiring in the next calendar month and one expiring in a month after that. Both straddles should be market neutral, i.e. have a beta of zero. To do this we need to weight call and put in a straddle accordingly. Let the weight of the call in a given straddle be θ, then

$$
\theta \beta_{c}+(1-\theta) \beta_{p}=0 \Longrightarrow \theta=\frac{\beta_{p}}{\beta_{p}-\beta_{c}}
$$

Once we picked θ for each of the straddles, we need to go long one unit of short-horizon straddle and short y units of long-horizon straddles. We need to pick y so that vega of the strategy is zero. First note that the vegas of calls and puts are the same and are given by

$$
S e^{-q \tau} \phi\left(d_{1}\right) \sqrt{\tau} \text { where } d_{1}=\frac{\ln (S / K)+\left(r-q+\sigma^{2} / 2\right) \tau}{\sigma \sqrt{\tau}}
$$

Therefore, the vega of each straddle is given by vega of either option. Once we calculated vegas of each straddle we weight them so that

$$
1 \cdot \operatorname{vega}(\text { straddle } 1)-y \cdot \operatorname{vega}(\text { straddle } 2)=0 \Longrightarrow y=\frac{v e g a(\text { straddle } 1)}{v e g a(\text { straddle } 2)}
$$

In the end, we have a portfolio consisting of four options:

Option	weight
Short horizon call	θ_{1}
Short horizon put	$1-\theta_{1}$
Long horizon call	$y \cdot \theta_{2}$
Long horizon put	$y \cdot\left(1-\theta_{2}\right)$

We hold this portfolio for one day and sell it the next trading day
2. VOL factor is almost exactly the same, we also construct a two market neutral straddles with with different maturities. Then, we take a long one unit position in the longer dated straddle and short y units of shorter dated straddle. We pick y to set gamma of the strategy to be equal to zero:

$$
y=\frac{\operatorname{gamma}(\text { straddle } 2)}{\operatorname{gamma}(\text { straddle } 1)}
$$

How to calculate betas? Authors do it according to Black-Scholes world where the price follows a geometric Brownian motion. There the evolution of Call price is given by Ito's Lemma as

$$
d C=\frac{\partial C}{\partial S} d S+\frac{1}{2} \frac{\partial^{2} C}{\partial S^{2}} \sigma^{2} S^{2} d t+\frac{\partial C}{\partial t} d t
$$

Instantaneous covariance of the return on the call and return on the market is given by

$$
\begin{gathered}
\operatorname{cov}\left(\frac{d C}{C}, \frac{d S_{m}}{S_{m}}\right)=\operatorname{cov}\left(\frac{\partial C}{\partial S} \frac{1}{C} d S+\frac{1}{2} \frac{\partial^{2} C}{\partial S^{2}} \sigma^{2} S^{2} \frac{1}{C} d t+\frac{\partial C}{\partial t} \frac{1}{C} d t, \frac{d S_{m}}{S_{m}}\right)= \\
=\operatorname{cov}\left(\frac{\partial C}{\partial S} \frac{S}{C} \frac{d S}{S}, \frac{d S_{m}}{S_{m}}\right)=\Delta \frac{S}{C} \operatorname{cov}\left(\frac{d S}{S}, \frac{d S_{m}}{S_{m}}\right)
\end{gathered}
$$

which implies the following instantaneous beta relationship

$$
\beta_{c}=\Delta \frac{S}{C} \cdot \beta_{s}
$$

To get the beta of the put we can use the put call parity. Ignore all parts that are not stochastic as they will drop from covariances:

$$
\begin{gathered}
C=P+S+\ldots \\
d C=d P+d S+\ldots \\
\frac{d C}{C}=\frac{d P}{C}+\frac{d S}{C}+\ldots \\
\frac{d C}{C}=\frac{P}{C} \frac{d P}{P}+\frac{S}{C} \frac{d S}{S}+\ldots
\end{gathered}
$$

which implies the following beta relationship

$$
\beta_{c}=\frac{P}{C} \cdot \beta_{p}+\frac{S}{C} \cdot \beta_{s} \Longrightarrow \beta_{p}=\frac{C}{P} \cdot \beta_{c}-\frac{S}{P} \cdot \beta_{s}
$$

Since the authors work with index options they set $\beta_{s}=1$ which allows to calculate $\beta_{c} \Longrightarrow$ $\beta_{p} \Longrightarrow \theta$ using observables.

